Review: **ABC of CBC** (Cell Blood Count)

Dr. Mukesh Desai
Hematologist & Immunologist
Chief, Division of Immunology
Honorary Hematologist, Department Of Pediatric Hematology Oncology,
Bai Jerbai Wadia Hospital for Children
Parel, Mumbai 400 012.

Consultant Hematologist:
Sir H. N. Hospital
B. Nanavati Hospital
Asian Heart Institute
Saifee Hospital
Review: **ABC of CBC** (Cell Blood Count)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Principles of Coulter counter</td>
<td>1</td>
</tr>
<tr>
<td>Evaluation of a CBC Report</td>
<td>2</td>
</tr>
<tr>
<td>Microcytic anemia</td>
<td>4</td>
</tr>
<tr>
<td>Macrocytic Anemia</td>
<td>7</td>
</tr>
<tr>
<td>Normocytic anemia</td>
<td>10</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>12</td>
</tr>
<tr>
<td>Leucocyte Abnormalities</td>
<td>13</td>
</tr>
<tr>
<td>Conclusion</td>
<td>19</td>
</tr>
</tbody>
</table>
Introduction

A complete blood cell count (CBC) is one of the most common laboratory tests in clinical practice. More than 10% to 20% of CBC is reported as abnormal. Therefore, it is in every doctors' interest to have some understanding of test basics and have a structured action plan for their interpretation.

Automated Cell Counters like the coulter counter can electronically count circulating blood cells like red blood cells (RBCs), white blood cells (WBCs), and platelets.

Principles of Coulter counter

It generates an electrical pulse when a blood cell passes through a small aperture surrounded by electrodes.

Each electrical pulse represents an individual cell, and the pulse height indicates the cell volume.

It can therefore register the total cell count as well estimate the average cell volume and the variation in cell size. For example, it can measure RBC numbers, measure RBC volume i.e. the mean corpuscular volume (MCV) and the RBC distribution width (RDW), respectively.

They are also capable of measuring cell content of WBCs and provide automated differential count (ie, 5-part differential). The granulocyte count is fairly accurate and it can also provide absolute values for all blood counts i.e Absolute Neutrophil count (ANC), Absolute Lymphocyte count (ALC), Absolute Eosinophil count (AEC), and Absolute Monocyte Count (AMC).

Hemoglobin and hematocrit are the other measured variables by the coulter. From this one can calculate the MCH, MCHC

Limitations of coulter counter:

Standardization of Machine is necessary to ensure consistent results

When accepting the platelet count and the automated WBC differential count it is always necessary to cross check it by the human eye on direct Peripheral Smear

For example, it is possible that the machine may show a low platelet count and the direct peripheral smear show a normal platelet count. This condition is known as Pseudothrombocytopenia. This may occur because the anticoagulant EDTA may clump the platelets and hence the coulter would record a decreased platelet count. Thus every low platelet count must be crosschecked by peripheral smear before an elaborate investigation for thrombocytopenia is undertaken. In our country people from Bihar, Bengal, Assam & the Northeast have Macro platelets, which very often is the cause of Pseudothrombocytopenia.

EDTA may clump platelets causing the coulter to record a decreased platelet count.
When interpreting a CBC report a practitioner will have to focus on the following variables:

- **Hb**: As a general indicator of anemia or polycythemia
- **MCV (Mean Corpuscular Volume)**: A key parameter for the classification of anemias
- **RDW (RBC distribution width)**: A relatively useful parameter in the differential diagnosis of anemia
- **RBC count**: An increased RBC count associated with anemia is characteristic of ineffective erythropoiesis seen classically in beta thalassemia trait
- **Platelet count**: To detect either thrombocytopenia or thrombocytosis
- **WBC with differential count**: Usually gives important clues for the diagnosis of infections, hematological disorders like acute leukemia as well as for the presence of leukopenia and neutropenia

For abnormal WBC counts, the practitioner should immediately ask which WBC type is affected: Neutrophils, Lymphocytes, Monocytes, Eosinophils, or Basophils as this may provide important clue to a patient’s clinical condition and aetiology.

Normal Variables of CBC

While interpreting a CBC a pediatrician must note the normal values of individual parameter for age as they vary with age. This is very important as many gross errors are made when this is not done. Many Pathologists have preprinted normal values for adult in their CBC report hence a pediatrician is well advised to have normal values of CBC parameters in their clinic and refer to it frequently.

Table of normal values in children

Finally, an “abnormal” CBC should be interpreted within the context of a child’s baseline value because up to 5% of the general population without disease may display laboratory values outside the statistically assigned “normal” reference range.

Differences in the CBC based on race and sex should be considered when interpreting results. Hence it is very important to have normal values for Indian Children available.

As a generalization, RBC-associated parameters are lower and platelet counts are higher in women compared with men.
<table>
<thead>
<tr>
<th>Age Group</th>
<th>Hb</th>
<th>HCT</th>
<th>MCV</th>
<th>MCHC</th>
<th>Ratio</th>
<th>WBC (10^3/μL)</th>
<th>Platelets (10^3/μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-30 Weeks</td>
<td>13.4</td>
<td>41.5</td>
<td>118.2</td>
<td>37.9</td>
<td>-</td>
<td>4.4</td>
<td>254</td>
</tr>
<tr>
<td>28 Week</td>
<td>14.5</td>
<td>45</td>
<td>120</td>
<td>31</td>
<td>5-10</td>
<td>4.4</td>
<td>275</td>
</tr>
<tr>
<td>3 Week</td>
<td>15</td>
<td>47</td>
<td>118</td>
<td>32</td>
<td>3-10</td>
<td>11.4</td>
<td>290</td>
</tr>
<tr>
<td>Term (Cord)</td>
<td>16.5</td>
<td>51</td>
<td>108</td>
<td>33</td>
<td>3-7</td>
<td>18.1</td>
<td>290</td>
</tr>
<tr>
<td>1-3 day</td>
<td>18.5</td>
<td>56</td>
<td>108</td>
<td>33</td>
<td>1.8-4.6</td>
<td>18.9</td>
<td>192</td>
</tr>
<tr>
<td>2 Week</td>
<td>16.6</td>
<td>53</td>
<td>105</td>
<td>31.4</td>
<td></td>
<td>11.4</td>
<td>252</td>
</tr>
<tr>
<td>1 Month</td>
<td>13.9</td>
<td>44</td>
<td>101</td>
<td>31.8</td>
<td>0.1-1.7</td>
<td>10.8</td>
<td></td>
</tr>
<tr>
<td>2 Month</td>
<td>11.2</td>
<td>35</td>
<td>95</td>
<td>31.8</td>
<td></td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>6 Months</td>
<td>12.6</td>
<td>36</td>
<td>76</td>
<td>35</td>
<td></td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>6 Months-2 Yrs.</td>
<td>12.0</td>
<td>36</td>
<td>78</td>
<td>33</td>
<td>0.7-2.3</td>
<td>10.6</td>
<td>150-350</td>
</tr>
<tr>
<td>2 - 6 Yrs.</td>
<td>12.5</td>
<td>37</td>
<td>81</td>
<td>34</td>
<td>0.5-1.0</td>
<td>8.5</td>
<td>150-350</td>
</tr>
<tr>
<td>6 – 12 Yrs.</td>
<td>13.5</td>
<td>40</td>
<td>76</td>
<td>34</td>
<td>0.5-1.0</td>
<td>8.1</td>
<td>150-350</td>
</tr>
<tr>
<td>12 – 18 Yrs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>14.5</td>
<td>43</td>
<td>88</td>
<td>34</td>
<td>0.5-1.0</td>
<td>7.8</td>
<td>150-350</td>
</tr>
<tr>
<td>Female</td>
<td>14.0</td>
<td>41</td>
<td>90</td>
<td>34</td>
<td>0.5-1.0</td>
<td>7.8</td>
<td>150-350</td>
</tr>
<tr>
<td>Adult</td>
<td>15.5</td>
<td>47</td>
<td>90</td>
<td>34</td>
<td>0.8-2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>14</td>
<td>41</td>
<td>90</td>
<td>34</td>
<td>0.8-4.1</td>
<td>7.4</td>
<td>150-350</td>
</tr>
<tr>
<td>Female</td>
<td>14.0</td>
<td>41</td>
<td>90</td>
<td>34</td>
<td>0.5-1.0</td>
<td>7.4</td>
<td>150-350</td>
</tr>
</tbody>
</table>
Evaluation of CBC in a patient with Anemia

Important principles of interpretation of CBC in ANEMIA are outlined:

- Be sure anemia is present and that the seemingly low Hb is not just a normal variation of Hb for age.
- Vice versa many women believe their Hb is always on the lower side and that that is normal for them. This concept needs to be changed do as to evaluate & treat large no of women with mildly low Hb who are definitely affected by mild anemia.

- Classify anemia on Basis of MCV
 - Microcytic (MCV, <80 fL or normal for age)
 - Normocytic (MCV, 80-100 fL or normal for age)
 - Macrocytic (MCV, >100 fL or normal for age).

- This will help narrow the differential diagnosis in each patient with anemia

- Peripheral blood smear evaluation during the initial evaluation of anemia is a great asset in all subtypes of anemia. It helps substantially in the differential diagnosis and provides guidance for further testing. It can help narrow down the investigations in a child and substantially economize the investigations.

Microcytic anemia

The differential diagnoses for microcytic anemia are:

- Iron deficiency anemia (IDA)
- Anemia of chronic disease (ACD)
- Thalassemia
- Sideroblastic anemia
- Lead (Pb) poisoning
- Copper (Cu) poisoning
- Zinc (Zn) ingestion

It is worth noting here that all the causes of microcytic hypochromic anemia affect the hemoglobin synthesis in some way.

The most common cause of the microcytic anemias is IDA.

Doing a peripheral smear and it will give you an important clue.

Serum ferritin may be done to confirm iron deficiency. A low serum ferritin level is diagnostic of IDA. Diagnosis of IDA is unlikely in the presence of a persistently normal or elevated serum ferritin level.
It is important to remember serum ferritin is an acute phase reactant and it is elevated in association with infection. Caution is necessary while interpreting serum ferritin value in-patient of suspected IDA with infection.

- If the serum ferritin level is normal in patients with chronic microcytosis, especially if they belong to Lohana, Khoja, Agarwal, Bhanushali, Bania, Neobuddhist, Sindhi, and Jain communities; a diagnosis of thalassemia should be considered, and hemoglobin electrophoresis should be done.

- Also look at RBC count; if RBC count is > 5.0 x 10^9/L it favours possibility of Thalassaemia Minor.

- Various other computed parameters might help one suspect β- Thalassaemia Minor. One such useful parameter is if the MCV/RBC ratio is < 11 it favours possibility of beta Thalassaemia Minor while a ratio > 11 favors IDA.

- RDW may also help differentiate IDA from Beta Thalassaemia Minor. RDW is elevated in IDA while it is normal in beta thalassaemia minor.

- For interpretation of Hb electrophoresis you may require Hematologist help.

Hemoglobin electrophoresis results are normal in the α-thalassemia trait and abnormal in the β-thalassemia trait as well. Concomitant IDA or Megaloblastic anemia may mask the typical abnormality seen in the β-thalassemia trait. HbA2 (α2 δ2) level are increased in megaloblastic anemia & sometimes the values can be increased from the normal value of 2% to a value of > 3.5% & give a false diagnosis of beta thalassemia minor. All borderline HbA2 values must be rechecked after correction of anemia.

Acquired microcytic anemia that is not IDA suggests the possibility of Anemia of chronic disease (ACD). A child with disseminated Koch or RA having mild microcytic anemia not responding to iron supplement therapy is a classical example of anemia of chronic disease. These children would benefit from Erythropoietin therapy.

Diabetic patients on Ayurvedic medications are prone to develop Pb poisoning.
We know that serum ferritin is an acute phase reactant and hence will be affected by inflammation as well as infection. Hence CRP & estimation of ratio of sTfR/log Ferritin is used in newer algorithm for evaluation of microcytic hypochromic anemia as shown in Fig. 2.
Macrocytic Anemia

Causes of Macrocytosis:

- Vitamin B12 and folate deficiency
- Macrocytosis secondary to reticulocytosis
- Drug induced
- Constitutional Hypoplastic anemia
- Myelodysplastic syndrome
- Liver disease
- Hypothyroidism
- Hemolysis
B12 deficiency is common in Indian children especially strict vegetarian and they are very commonly associated with severe periungual pigmentation and knuckle pigmentation.

It is also important to remember that megaloblastic anemia is very often associated with pancytopenia and their LDH levels are markedly elevated.

Bone Marrow evaluation is very important in Macrocytic anemia, as this would help rule out Myelodysplastic syndrome.

Other investigations that may help are thyroid function test, liver function test and depending on clinical condition work up for hemolysis may be necessary.

Fig. 3: Algorithm for investigation of Macrocytic anemia

Algorithm for Macrocytic anemia

- **Macrocytic anemia**
 - R/o Drugs HU; Zidovudine
 - R/o B12 / folate deficiency
 - Check Homocysteine & B12 levels
 - Both Normal
 - B12 folate deficiency unlikely
 - MCV 100-110 fl
 - Consider Alcohol, liver disease, Hypothyroidism Reticulocytosis with hemolysis
 - MCV >100 fl
 - Consider MDS Or primary BMS Syndromes
 - One or Both abnormal
 - Check serum MMA levels
 - If elevated Consider B12 deficiency Or folate deficiency
<table>
<thead>
<tr>
<th>Category of anemia</th>
<th>Differential diagnosis</th>
<th>CBC clues</th>
<th>PBS clues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macrocytic</td>
<td>Drug-induced</td>
<td>↑RDW</td>
<td>Oval macrocytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marked or mild macrocytosis</td>
<td></td>
</tr>
<tr>
<td>Nutritional</td>
<td>↑RDW</td>
<td></td>
<td>Oval macrocytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marked or mild macrocytosis</td>
<td>Hypersegmented neutrophils</td>
</tr>
<tr>
<td>MDS or other bone marrow disorder</td>
<td>Increased RDW</td>
<td></td>
<td>Dimorphic RBCs</td>
</tr>
<tr>
<td>Liver disease, alcohol use</td>
<td>N. RDW</td>
<td></td>
<td>Round macrocytes</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td></td>
<td>Thrombocytopenia</td>
<td>Target cells</td>
</tr>
<tr>
<td>Hemolysis</td>
<td>N or ↑RDW</td>
<td></td>
<td>Round macrocytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Polychromasia</td>
</tr>
</tbody>
</table>
Normocytic anemia

Causes of normocytic anemia:
- Dimorphic anemia
- Anemia of chronic disease (ACD)
- Hemolysis
- Bleeding
- Anemia of renal insufficiency

In a patient with normocytic anemia exclude potentially treatable causes like nutritional anemia combined iron and B12 deficiency, bleeding, anemia of renal insufficiency, and hemolysis.

Retic count high may provide clue for hemolysis and presence of hemolysis
Elevated LDH may help detect hemolysis
Elevated creatinine will confirm anemia of renal failure.
Peripheral blood smear may help diagnose sickle cell, dimorphic anemia.

The differential diagnosis of a normocytic anemia that is not linked to bleeding, nutrition, renal insufficiency or hemolysis is either normocytic ACD or primary bone marrow disorder.

Fig. 4. Algorithm for evaluation of normocytic anemia

Algorithm for Normocytic anemia

Nutritional anemia
- Check Homocysteine & B12 levels & ferritin levels

Hemolytic anemia
- Check general indicators of Hemolysis
 - Haptoglobin
 - LDH
 - Indirect Bilirubin
 - Retic count

Suggestive of Hemolysis
- Spherocyte
 - Consider AIHA
 - Congenital spherocytosis
 - Coombs test
 - Osmotic fragility if Coombs test -ve
- Schistocyte
 - Consider TTP/
 - HUS/DIC
 - Va/vular Hemolysis

Other findings
- Hematology consult

Not Suggestive of Hemolysis
- Anemia of chronic disease
- Primary BM disorder

Use information From History & PBS for Hematology Consult

Anemia of ESRD
- Check Serum creatinine levels
<table>
<thead>
<tr>
<th>Category of anemia</th>
<th>Differential diagnosis</th>
<th>CBC clues</th>
<th>PBS clues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normocytic</td>
<td>Bleeding</td>
<td>Usually unremarkable</td>
<td>Polychromasia</td>
</tr>
<tr>
<td></td>
<td>Nutritional anemia</td>
<td>↑ RDW</td>
<td>Anisocytosis</td>
</tr>
<tr>
<td></td>
<td>Anemia of renal</td>
<td>N RDW</td>
<td>Dimorphic RBCs</td>
</tr>
<tr>
<td></td>
<td>insufficiency</td>
<td></td>
<td>Usually unremarkable</td>
</tr>
<tr>
<td></td>
<td>Hemolysis</td>
<td>N or ↑ RDW</td>
<td>Polychromasia</td>
</tr>
<tr>
<td></td>
<td>Thrombocytosis</td>
<td></td>
<td>Spherocytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Schistocytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bite cells</td>
</tr>
<tr>
<td></td>
<td>Anemia of chronic</td>
<td>N RDW</td>
<td>Unremarkable</td>
</tr>
<tr>
<td></td>
<td>disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A primary bone</td>
<td>↑ RDW</td>
<td>Dimorphic RBCs (MDS)</td>
</tr>
<tr>
<td></td>
<td>marrow disorder</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other cytopenias</td>
<td></td>
<td>Pseudo Pelger-Huet anomaly (MDS)</td>
</tr>
<tr>
<td></td>
<td>Monocytosis</td>
<td></td>
<td>Oval macrocytes (MDS)</td>
</tr>
<tr>
<td></td>
<td>Leukocytosis</td>
<td></td>
<td>Myelophthisis (MMM) ↑</td>
</tr>
<tr>
<td></td>
<td>Thrombocytosis</td>
<td></td>
<td>Rouleaux (myeloma)</td>
</tr>
<tr>
<td></td>
<td>Abnormal differential</td>
<td></td>
<td>Blasts (acute leukemia)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Presence of abnormal cells</td>
</tr>
</tbody>
</table>
As mentioned earlier the first step in evaluation of thrombocytopenia is to exclude the possibility of spurious thrombocytopenia caused by EDTA-induced platelet clumping.

Examining the Peripheral blood smear will show adequate platelet count or repeating the CBC using sodium citrate as an anticoagulant.

- **Macroplatelets suggests that thrombocytopenia is peripheral, more likely to be immune mediated**

Look at the size of platelet on Peripheral blood smear; if there are macroplatelets than it is likely that the cause of thrombocytopenia is peripheral and more likely to be immune mediated.

- **Exclude the possibility of spurious thrombocytopenia caused by EDTA-induced platelet clumping**

Always look for Schistocytes or fragmented RBC’s on PNS to rule out the possibility of thrombotic thrombocytopenic purpura/hemolytic uremic syndrome (TTP/HUS) because of the urgency for specific therapy for these diagnoses (ie, plasma apheresis). It is essentially a peripheral blood smear diagnosis and an expert hematomorphologist with background of history of patient is necessary to make this life threatening diagnosis.

Drug-related thrombocytopenia should be considered but there is no specific diagnostic indicator on CBC. History of drug ingestion and its temporal association is extremely important in these cases.

Presence of atypical lymphocytes on PBS suggests a viral aetiology.

- **ITP is a diagnosis of exclusion requiring consideration of other causes of immune-mediated thrombocytopenia**

Look for abnormal blast cells to rule out leukaemia.

Idiopathic thrombocytopenic purpura (ITP) is the major contender in the differential diagnosis of isolated thrombocytopenia. However, ITP is a diagnosis of exclusion that requires consideration of other causes of immune-mediated thrombocytopenia including connective tissue disease, lymphoproliferative disorders, and human immunodeficiency virus (HIV) infection.
Leucocyte Abnormalities

Principles of interpretation of WBC abnormalities:

- Is the WBC count abnormal for age is the first consideration?
- Which WBC is affected, Neutrophil, Lymphocyte, Eosinophils, Monocytes or Basophils?
- What is the absolute value of these cells? E.g absolute neutrophil count. Always interpret in terms of absolute values and not in term of percentage of cells.
- Are these WBC normal in morphology or have abnormal morphology; look at the peripheral smear and rule out leukaemia and classify whether this is granulocytosis, monocytosis, and lymphocytosis.
- What is their trend in the disease process?

LEUCOCYTOSIS:

Neutrophilic leucocytosis:

- Pyogenic infections
- Drug induced e.g. steroids
- In case of brisk bleeding
- Systemic onset Juvenile Rheumatoid Arthritis (JRA)
- Periodic fever syndrome
- Stress
- Myeloid leukaemia
- Growth factor use like Granulocyte Colony Stimulating Factor (GCSF)
- Myeloproliferative disorders

Peripheral smear evaluation will help rule out leukaemia and may pick up clues, which may suggest infiltration of bone marrow like leuкоerythroblastic response.

Important point to note is every leucocytosis does not mean pyogenic infection and there are noninfectious causes of neutrophilic leucocytosis.

Every leucocytosis does not mean pyogenic infection

Steroids, Myeloproliferative Disorders, periodic fever syndromes, Systemic onset JRA are important causes of noninfectious Neutrophilic leucocytosis.
Lymphocytosis:
- Viral infections
- Infectious mononucleosis
- CMV infection
- Lymphoproliferative disorder
- Whooping cough
- Koch
- Addison’s disease.

Peripheral blood smear should be seen to rule out Acute Lymphoblastic leukaemia.

Presence of Atypical Reactive T-cell lymphocytosis suggests viral infection.

If the clinical scenario is consistent with viral infection; after the patient recovers, the CBC and PBS should be repeated to see whether the abnormality has resolved.

Extreme Lymphocytosis can be seen with whooping cough and the patient may be often referred to you as a case of acute leukaemia. However; peripheral smear show morphologically mature lymphocytes and not abnormal lymphoblast.

Monocytosis (Absolute Monocyte count > 400):
- Enteric fever
- Koch
- Recovery from neutropenia
- Viral infections
- Primary hemopoietic disorders like Juvenile myelomonocytic leukemia

Absolute monocytosis that is persistent should be considered a marker of a myeloproliferative disorder (eg, chronic myelomonocytic leukemia) until proved otherwise by bone marrow examination and cytogenetic studies.

A hematology consultation is advisable for further evaluation.
Eosinophilia:
- Worms
- Allergic conditions
- Tropical eosinophilia
- Loffler pneumonia
- Drug induced hypersensitivity syndrome e.g. Carbamezapine
- Hypereosinophilic syndromes
- Addisonian crisis
- Hodgkin’s disease
- Churg Strauss syndrome
- Poly arteritis nodosa
- Myeloproliferative disorders
- Acute myeloid leukemia M4 with eosinophilia
- Eosinophilic fasciitis

Firstly exclude causes of “secondary” eosinophilia like parasite infestation, drugs, comorbid conditions such as asthma and other allergic conditions, vasculitides, lymphoma, and metastatic cancer.

Stool test for ova and parasites.

In suspected case of primary eosinophilia Bone Marrow is required along with Cytogenetics

A trial of deworming and a course of diethyl carbamazine should be given to all and response followed by measuring the absolute eosinophil count and not by eosinophil percentage as emphasized.

Basophilia:
- Allergic conditions
- Myeloproliferative disorders
- Ulcerative colitis
- RA
- Influenza, Chicken Pox
- Koch
- Hypersensitivity reactions

Is extremely rare to see basophilic leukaemia.

This is just a short list and a detailed list can be found in textbook.
LEUKOPENIA

Neutropenia:

Neutropenia is a sinister problem and requires immediate evaluation.

Neutropenia is severe if ANC, $<0.5 \times 10^9/L$ because of the associated high risk of infection.

Causes of severe neutropenia:

- Drug induced
- Post viral
- Hemophagocytic Syndromes
- Congenital Neutropenia Syndrome
- Cyclic neutropenia
- Leukaemia
- Aplastic Hypoplastic anemia
- Autoimmune neutropenia
- Felty’s Syndrome

Any drug should be assumed to be a potential offender until proved otherwise

<p>| Table 5. Drugs commonly associated with Neutropenia |
|---------------------------------|------------------|</p>
<table>
<thead>
<tr>
<th>Drug category</th>
<th>Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticonvulsants</td>
<td>Carbamazepine, valproic acid, diphenylhydantoin</td>
</tr>
<tr>
<td>Thyroid inhibitors</td>
<td>Carbimazole, methimazole, propylthiouracil</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>Penicillins, cephalosporins, sulfonamides, chloramphenicol, vancomycin, trimethoprim-sulfamethoxazole</td>
</tr>
<tr>
<td>Antipsychotics</td>
<td>Clozapine</td>
</tr>
<tr>
<td>Antiarrhythmics</td>
<td>Procainamide</td>
</tr>
<tr>
<td>Antirheumatics</td>
<td>Gold salts, hydroxychloroquine, penicillamine</td>
</tr>
<tr>
<td>Aminosalicylates</td>
<td></td>
</tr>
<tr>
<td>Nonsteroidal anti-inflammatory drugs</td>
<td></td>
</tr>
</tbody>
</table>
Any drug should be assumed to be a potential offender until proved otherwise. Infection with viruses and sepsis is another common cause of neutropenia. Discontinue the presumed offending agent.
Close monitoring of daily CBC advised.
Use G CSF if clinical condition demands it.

Lymphopenia:

Causes of lymphopenia:

- Drugs
- Corticosteroids
- Immunosuppressive drugs
- Anti Thymocyte globulin
- Infections
- HIV
- Measles
- Tuberculosis
- Collagen vascular disorders
- Lupus
- Rheumatoid Arthritis
- Sarcoidosis
- Thymoma
- Critical illness in ICU
- Congenital primary Immunodeficiency Syndrome
 - Severe Combined Immunodeficiency (SCID)

In infancy if a child has lymphopenia suspect severe combined immunodeficiency and it is the easiest diagnosis to make if pediatricians pay attention to Absolute Lymphocyte Count in CBC report.

Like Neutropenia Lymphopenia should be paid attention to and should be routinely seen for when one looks at the CBC parameters.
Thrombocytosis:

Because of wide availability of automated CBC count we now increasingly see Thrombocytosis where platelets come as a part of the evaluation. Practitioners have started paying attention to this parameters and it is worth knowing more about it.

Causes of thrombocytosis:

- Infections
 - Viral
 - Tuberculosis
- Iron deficiency anemia
- Bleeding
- Surgery
- Asplenia
- Chronic inflammation
- Inflammatory syndromes
- Myeloproliferative disorders
 - CML
 - Essential thrombocytosis, PRV, AMM
- Malignancies
 - Neuroblastoma
 - GI malignancies
- Reactive
 - Juvenile Rheumatoid Arthritis, collagen vascular disorders

The distinction between Primary essential Thrombocytosis and Reactive Thrombocytosis is clinically relevant because the former but not the latter is associated with increased risk of thrombohemorrhagic complications.

Presence of splenomegaly leucocytosis favour primary essential thrombocytosis. It is extremely rare in children.

In our context an MT to rule out Koch should be done in all cases of thrombocytosis. Associated microcytosis suggest the possibility of IDA.

Stool Occult blood must be done to rule out presence of blood loss and GI
Malignancy in adults definitely.
If ESR is markedly elevated think of associated collagen vascular disorder
Review old medical records if there is chronic thrombocytosis look for asplenia
If asplenia is ruled out than think of primary thrombocytosis, which is more a problem in the adults.
Some times a Bone Marrow examination is necessary to r/o marrow infiltration irritating the marrow and causing thrombocytosis.
C-reactive protein should be done if elevated the possibility of an occult inflammatory or malignant process, as a cause of reactive thrombocytosis should be considered.

Conclusion

A practitioner should be able to address some but not all CBC abnormalities. We hope this provides some guidance in this regard.

Remember following basic points from a hematologist perspective.

- Always do CBC on automated Cell Counter and pay attention to all parameters provided by the counter report and it is cost effective to do CBC on coulter counter.
- Refer your patients to centres that standardize their machines regularly.
- Always provide history to the pathologist for a meaningful interpretation of CBC.
- Your initial CBC should include a retic count & ESR if evaluation is for a child with anemia.
- Classify anemia as per índices. Look for indicators on CBC indices suggesting possibility of thalassaemia minor in every CBC report. This is our obligation to society
- Peripheral blood smear is extremely important in children to complement your diagnosis so have an expert see them.
- When interpreting WBC always think in terms of absolute values of cells
- Besides paying attention to neutrophil also pay attention to absolute lymphocyte counts in clinical practice.
- Always review with old records and compare
- In case of treatment of anemia follow up CBC must be done to evaluate response
and you must always ensure that not only Hb increases to normal but also abnormal indices have returned to normal.

- In case of therapeutic trial in patient of anaemia it is important to follow up CBC to judge response.
- It is a good idea to ask for Retic count along with CBC in case of evaluation for patient of anemia.
- A prompt hematology consultation is encouraged in patients with severe cytopenia, pancytopenia, or extreme cytosis of any type or when a PBS report suggests TTP or acute leukemia.